A Two-Dimensional Mean Problem

G. R. Blakley, I. Borosh, and C. K. Chui
Department of Mathematics, Texas A \& M University, College Station, Texas 77843

Communicated by G. G. Lorentz
Received March 25, 1976

Let $0<r_{n}<1$ and $w_{n}=e^{i 2 \pi / n}, n=1,2, \ldots$. For a function f holomorphic in the open unit disc U, we consider the linear functionals s_{n} defined by the means $s_{n}\left(r_{n}, f\right)=(1 / n) \sum_{k=1}^{n} f\left(r_{n} w_{n}{ }^{k}\right)$. If $0<r_{n} \leqslant \rho<1$, we prove that f is uniquely determined by $s_{n}\left(r_{n}, f\right), n=1,2, \ldots$, and in fact, f can be represented by a polynomial series whose coefficients involve $s_{n}\left(r_{n}, f\right)$. The case $0<r_{n} \leqslant 1$ is also considered. In particular, if $r_{n}=1$ for all large n, there exist nontrivial functions f, holomorphic in U and continuous on the closure of U, such that $s_{n}\left(r_{n}, f\right)=0$ for $n=1,2, \ldots$.

1. Introduction and Main Results

Let U denote the open unit disc in the complex plane with closure \bar{U} and boundary T. Let $H=H(U)$ denote the space of functions holomorphic in U; and as usual, let H^{p} be the Hardy spaces and A the space of functions in H which are continuous on \bar{U}. For each positive integer n, let $w_{n}{ }^{k}=\exp (i 2 \pi k / n)$, $k=1, \ldots, n$, be the nth roots of unity. For a continuous function f on T, we consider its arithmetic means

$$
s_{n}(f)=\frac{1}{n} \sum_{k=1}^{n} f\left(w_{n}^{k}\right)
$$

These are Riemann sums and hence converge to the Riemann integral

$$
s_{\infty}(f)=\int_{0}^{1} f\left(e^{i 2 \pi t}\right) d t
$$

of f as $n \rightarrow \infty$. The sequence $r_{n}(f)=s_{n}(f)-s_{\infty}(f)$, called the sequence of Riemann coefficients of f in [4], has similar asymptotic behavior to the sequence of Fourier coefficients of f for certain classes of functions f (cf. [4, 7]). Since the Fourier coefficients of f uniquely determine f, it is natural to ask if
the Riemann coefficients of f would also uniquely determine f. However. it is clear that any "odd" function

$$
f(z)=\sum_{k=1}^{\infty} a_{k}\left(z^{k} \cdots z^{-k}\right),
$$

where $\sum\left|a_{k}\right|<\infty$ say, satisfies

$$
\begin{equation*}
s_{n}(f)=0, \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

Hence, we only consider functions holomorphic in U. This problem was studied in [2], [6], and [8]. We collect some of the known results in the following

Theorem A. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be in A such that (1) is satisfied. Then f is the zero function, if one of the following conditions is satisfied:
(a) $f^{\prime} \in H^{1}$;
(b) $a_{n}=O\left(1 / n^{1 ; \epsilon}\right)$ for some $\epsilon>0$;
(c) $\sum_{k=N}^{\infty}\left|a_{k}\right|=O(1 / N)$; or
(d) $f(z)=\sum_{n=0}^{\infty} b_{n} z^{q^{n}}$ with $\sum\left|b_{n}\right|<\infty$ where q is some positice integer.

Of course each of the above sufficient conditions is a technical one. However, it will be shown in Section 4 that there exists a nontrivial $f(z)=\sum a_{n} z^{n}$ in A with $\left|a_{n}\right| \leqslant 1 / n$ for all n such that (1) is satisfied.

We remark that the problem considered above is a "one-dimensional" one. In [8], a "two-dimensional" problem was posed, and it is the intention of this paper to study it. Let $0<r_{n}<1, n=1,2, \ldots$. For each $f \in H$, consider the "two-dimensional" means

$$
s_{n}\left(r_{n}, f\right)=\frac{1}{n} \sum_{k=1}^{n} f\left(r_{n} w_{n}^{k}\right)
$$

of f, that is, the means taken on the concentric circles $|z|=r_{n}, n=1,2, \ldots$. We will establish the following.

Theorem 1. Let $0<r_{n} \leqslant \rho<1, n=1,2, \ldots$, and let $f \in H$ satisfy

$$
\begin{equation*}
s_{n}\left(r_{n}, f\right)=0, \quad n=1,2, \ldots \tag{2}
\end{equation*}
$$

Then f is the zero function.
It will be clear (from the following Theorem 2) that none of the r_{n} 's in Theorem 1 can be replaced by 0 . The condition that the r_{n} 's are uniformly
bounded away from 1 is a technical one. We will give a proposition in Section 4 where the r_{n} 's are allowed to tend to 1 . If some r_{n} 's would be 1 , then to define the means $s_{n}\left(r_{n}, f\right)$, we would have to assume that f is a function in A. However, we will show that there is a nontrivial function f in A with $s_{n}\left(r_{n}, f\right)=0$ for all $n=1,2, \ldots$, where all, with the exception of a finite number of the r_{n} 's, are equal to 1 . The next results show that if any of the conditions in (2) is omitted, then Theorem 1 no longer holds.

Theorem 2. Let $0<r_{n} \leqslant 1, n=1,2, \ldots$. For each positive integer N, there is a unique polynomial P_{N} of degree N, leading coefficient equal to 1, and $P_{N}(0)=0$, such that

$$
\begin{equation*}
s_{n}\left(r_{n}, P_{N}\right)=r_{n}^{n} \delta_{n, N}, \quad n=1,2, \ldots \tag{3}
\end{equation*}
$$

where, as usual, $\delta_{n, N}$ is the Kronecker delta.
The polynomials P_{N} can be found explicitly and will be studied in Section 3. When $0<r_{n} \leqslant \rho<1$, Theorem 1 tells us that each function f holomorphic in U is uniquely determined by its means $s_{n}\left(r_{n}, f\right)$. This leads to the following interesting, and perhaps important, question: How do we reconstruct a function $f \in H$ from its means $s_{n}\left(r_{n}, f\right)$? From Theorem 4 below, we will see that f can be reconstructed from a polynomial series whose coefficients are the means $s_{n}\left(r_{n}, f\right)$. The "one-dimensional" problem has been studied in [5], and the representation polynomial series there is called a "Riemann series." In Section 3, we will prove the following results.

Theorem 3. Let $0<r_{n} \leqslant \rho<1, n=1,2, \ldots$ and $\left\{\alpha_{n}\right\}$ be a sequence of complex numbers which satisfies the condition

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|\alpha_{n}\right|^{1 / n} / r_{n} \leqslant 1 \tag{4}
\end{equation*}
$$

Then the polynomial series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\alpha_{n}}{r_{n}{ }^{n}} P_{n}(z) \tag{5}
\end{equation*}
$$

where the polynomials P_{n} are defined in Theorem 2, converges uniformly on every compact subset of U to a function $f \in H$, such that $s_{n}\left(r_{n}, f\right)=\alpha_{n}$ for each $n=1,2, \ldots$.

Theorem 4. Let $0<r_{n} \leqslant \rho<1$ and P_{n} be the polynomials defined in Theorem 2. Then every function f holomorphic in U can be represented by a polynomial series:

$$
\begin{equation*}
f(z)=f(0)+\sum_{n=1}^{\infty} \frac{s_{n}\left(r_{n}, f\right)-f(0)}{r_{n}{ }^{n}} P_{n}(z) \tag{6}
\end{equation*}
$$

where the series converges uniformly on every compact subset of U to f.

We call (5) a "two-dimensional" Riemann series, and (6) a "twodimensional" Riemann series expansion of f.

In Section 4, we will study the case when the radii r_{n} are allowed to approach 1 .

2. Proof of Theorem 1

We will first prove $f(0)=0$.
Lemma 1. Let $0<r_{n} \leqslant \rho<1, n=1,2, \ldots, f \in H$, and $s_{n}\left(r_{n}, f\right)=0$ for infinitely many n. Then $f(0)=0$.

Proof. By choosing a subsequence, if necessary, we may assume that $s_{n}\left(r_{n}, f\right)=0$ for $n=n_{j}, j=1,2, \ldots$, and $r_{n_{j}} \rightarrow r_{0} \leqslant \rho<1$. Then for $n=n_{j}$, we have

$$
\begin{aligned}
|f(0)|= & \left|f(0)-s_{n}\left(r_{n}, f\right)\right| \\
= & \left|\int_{0}^{1} f\left(r_{0} e^{i 2 \pi t}\right) d t-s_{n}\left(r_{n}, f\right)\right| \\
\leqslant & \left|\int_{0}^{1} f\left(r_{0} e^{i 2 \pi t}\right) d t-\frac{1}{n} \sum_{k=1}^{n} f\left(r_{0} e^{i 2 \pi k / n}\right)\right| \\
& +\frac{1}{n} \sum_{k=1}^{n}\left|f\left(r_{n} e^{i 2 \pi k / n}\right)-f\left(r_{0} e^{i 2 \pi k / n}\right)\right| .
\end{aligned}
$$

The first term on the right tends to zero because Riemann sums converge to the Riemann integral and the second term is arbitrarily small for large $n=n_{j}$ because f is uniformly continuous on $|z| \leqslant\left(1+r_{0}\right) / 2$. Hence, $f(0)=0$.

In virtue of Lemma 1, we may now write

$$
f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}
$$

so that

$$
s_{n}\left(r_{n}, f\right)=\sum_{k=1}^{\infty} a_{k} r_{n}{ }^{k}\left\{\frac{1}{n} \sum_{j=1}^{n} w_{n}^{j k}\right\}=\sum_{k=1}^{\infty} a_{k n} r_{n}^{k n}
$$

From hypothesis (2), it is necessary and sufficient to prove that the infinite homogeneous system

$$
\begin{equation*}
\sum_{k=1}^{\infty} r_{n}^{(k-1) n} a_{k n}=0, \quad n=1,2, \ldots \tag{7}
\end{equation*}
$$

has only the trivial solution. Let $F=\left(F_{i, j}\right)$ be the (infinite) coefficient matrix:

$$
F=\left(F_{i, j}\right)=\left[\begin{array}{cccccccc}
1 & r_{1} & r_{1}{ }^{2} & r_{1}{ }^{3} & r_{1}{ }^{4} & r_{1}{ }^{5} & r_{1}{ }^{6} & \cdots \tag{8}\\
0 & 1 & 0 & r_{2}{ }^{2} & 0 & r_{2}{ }^{4} & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & r_{3}{ }^{3} & 0 & \cdots \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

where

$$
\begin{align*}
F_{i, j} & =0 & & \text { if } \quad i \nmid j \tag{9}\\
& =r_{i}^{j-i} & & \text { if } \quad i \mid j
\end{align*}
$$

and let $F_{N}=\left(F_{i, j}\right)_{1 \leqslant i, j \leqslant N}, N=1,2, \ldots$, be the truncated $N \times N$ matrices. For each N, we are interested to find the inverse G_{N} of F_{N}. From the properties of F, it is easy to show that the matrices $G_{N}=\left(g_{i}(j)\right)_{1 \leqslant i, j \leqslant N}$, $N=1,2, \ldots$, are truncations of an infinite matrix

$$
G=\left(g_{i}(j)\right)=\left[\begin{array}{ccc}
g_{1}(1) & g_{1}(2) & \cdots \\
g_{2}(1) & g_{2}(2) & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

Indeed, $G_{N} F_{N}=I_{N}$ means $\sum_{l=1}^{N} g_{k}(l) F_{l, n}=\delta_{k, n}, 1 \leqslant k, n \leqslant N$, and by using (9), we have

$$
\begin{equation*}
\sum_{l \mid n} g_{k}(l) r^{n-l}=\delta_{k, n} \tag{10}
\end{equation*}
$$

In particular, the $g_{k}(l)$'s have the following properties:

$$
\begin{equation*}
g_{1}(1)=1, \quad g_{1}(n)=-\sum_{\substack{d ; n \\ d<n}} g_{1}(d) r_{d}^{n-d} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{k}(n)=0 \quad \text { if } \quad k \nmid n \tag{12}
\end{equation*}
$$

Here, (11) follows trivially from (10), and (12) can be obtained by an induction proof as follows. Indeed, if $k \nmid n$, then from (10) it follows that

$$
g_{k}(n)+\sum_{\substack{d, n \\ d<n}} g_{k}(d) r_{d}^{n-d}=\delta_{k n}=0
$$

If $d \mid n$ and $d<n$ then $k \nmid d$ (for otherwise $k \mid n$) so that $g_{k}(d)=0$ by the induction hypothesis. Hence, (12) is obtained. From (10) and (12), we also have

$$
\begin{equation*}
g_{k}(1)=0 \quad \text { if } \quad k>1, \quad \text { and } \quad g_{k}(k)=1 \quad \text { for } \quad k \geqslant 1 \tag{13}
\end{equation*}
$$

Next, for a fixed integer $k, k \geqslant 1$, we define

$$
\begin{equation*}
h_{k}(n)=g_{k}(n k) \quad \text { and } \quad \rho_{l}=r_{k l}^{k} \tag{14}
\end{equation*}
$$

Then from (12) and (13), it is clear that $h_{k}(n)$ satisfies
and

$$
\begin{equation*}
h_{k}(1)=1 \tag{15}
\end{equation*}
$$

We remark that the h_{k} 's satisfy the same recursive scheme as g_{1} with r_{n} replaced by ρ_{n}. To estimate g_{1} and h_{k}, we need the following combinatorial lemma.

Lemma 2. Let H be a function defined on the set of positive integers by
and

$$
H(1)=1
$$

$$
H(n)=\sum_{\substack{l i n \\ l<n}} H(l) \quad \text { if } n>1
$$

Then $H(n) \leqslant 2^{(\log n / \log 2)^{2}}$ for all n.
Proof. As usual, let $\Omega(n)$ denote the number of prime factors of n, counted with their multiplicities (cf. [10]). We will call $\Omega(n)$ the length of n. Now, if p is a prime number, then by definition $H(p)=H(1)=1$, $H\left(p^{2}\right)=H(p)+H(1)=2, \ldots, H\left(p^{j}\right)=H\left(p^{j-1}\right)+\cdots+H(1)=2^{j-1}, \ldots$. Hence, in general, if p_{1}, \ldots, p_{t} are primes and $\alpha_{1}, \ldots, \alpha_{t}$ are positive integers, then $H\left(p_{1}^{\alpha} \cdots p_{t}^{\alpha}\right)$ does not depend on p_{1}, \ldots, p_{t} but only depends on $\alpha_{1}, \ldots, \alpha_{t}$. Also for each positive integer k, there are only a finite number of ways to choose positive integers $\alpha_{1}, \ldots, \alpha_{t}$ such that $\alpha_{1}+\cdots+\alpha_{t}=k$. We can therefore define

$$
S_{k}=\max \{H(n): \Omega(n)=k\} .
$$

(Here, we note that if $n=p_{1}^{\alpha_{1}} \cdots p_{t}^{\alpha_{t}}$, then $\Omega(n)=\alpha_{1}+\cdots+\alpha_{t}=k$.) It is clear that $S_{1} \leqslant S_{2} \leqslant \cdots$. Let us write $n=p_{1} \cdots p_{k}$ where some of the primes p_{i} 's may be equal, so that $\Omega(n)=k$. The number of factors of n with length $k-1$ is at most $k=\binom{k}{1}$, the number of factors of n with length $k-2$ is at most $\binom{k}{2}, \ldots$. Hence, we have

$$
\begin{aligned}
S_{k} & \leqslant\binom{ k}{1} S_{k-1}+\binom{k}{2} S_{k-2}+\cdots+\binom{k}{k} S_{0} \\
& \leqslant S_{k-1}\left[\binom{k}{1}+\cdots+\binom{k}{k}\right] \leqslant 2^{k} S_{k-1},
\end{aligned}
$$

and therefore,

$$
S_{k} \leqslant 2^{k} S_{k-1} \leqslant 2^{k 2^{k-1}} S_{k-2} \leqslant \cdots \leqslant 2^{k+(k-1)+\cdots+1} \leqslant 2^{k^{2}} .
$$

Thus, if n is any positive integer, with length $\Omega(n)=k$ say, then

$$
H(n) \leqslant 2^{(\Omega(n))^{2}} .
$$

But $n=p_{1} \cdots p_{k} \geqslant 2^{k}=2^{\Omega(n)}$. This completes the proof of the lemma.

Lemma 3. Let $0<r_{n} \leqslant 1$. Then for each $n,\left|g_{1}(n)\right| \leqslant H(n)$.
Proof. We have $g_{1}(1)=H(1)=1$. Hence, from (11) and by using the induction hypothesis, we have

$$
\left|g_{1}(n)\right| \leqslant \sum_{\substack{d \nmid n \\ d<n}}\left|g_{1}(d)\right| r_{d}^{n-d} \leqslant \sum_{\substack{d, n \\ d<n}} H(d)=H(n)
$$

for $n>1$.
If the r_{n} 's are uniformly bounded above by $\rho \leqslant 1$, then we have the following upper bound for $g_{1}(n)$.

Lemma 4. Let $0<r_{n} \leqslant \rho \leqslant 1$. Then for all $n=2,3, \ldots$,

$$
\left|g_{1}(n)\right| \leqslant \rho^{n / 2} 2^{(\log n / \log 2)^{2}}
$$

Proof. We have, from (11) and by using Lemma 3, for $n>1$,

$$
\left|g_{1}(n)\right| \leqslant \sum_{\substack{d, n \\ d<n}}\left|g_{1}(d)\right| r_{d}^{n-d} \leqslant \sum_{\substack{d, n \\ d<n}} H(d) \rho^{n-d} .
$$

Since $d<n$ and $d \mid n$ imply $d \leqslant n / 2$, we have $n-d \geqslant n / 2$, so that $\rho^{n-d} \leqslant \rho^{n / 2}$. By Lemma 2, we then obtain

$$
g_{1}(n) \leqslant \rho^{n / 2} \sum_{\substack{d, n \\ d<n}} H(d)=\rho^{n / 2} H(n) \leqslant \rho^{n / 2} 2^{(\log n / \log 2)^{2}} .
$$

By using the above argument and (15), we also have
Lemma 5. Let $0<r_{n} \leqslant \rho \leqslant 1$ and k be any positive integer. Then

$$
\begin{equation*}
g_{k}(n k)\left|=\left|h_{k}(n)\right| \leqslant \rho^{n k / 2} 2^{(\log n / \log 2)^{2}}, \quad n>1 .\right. \tag{16}
\end{equation*}
$$

We are now ready to complete the proof of Theorem 1 . Let $0<r_{n} \leqslant$ $\rho<1$, and let k be any positive integer. From (7) and (8), we have

$$
0=\left[g_{k}(1), \ldots, g_{k}(N): 0, \ldots\right]\left[\begin{array}{c:c}
F_{N} & R \\
\hdashline 0 & S
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{N} \\
\hdashline a_{N+1} \\
\vdots
\end{array}\right]
$$

and hence,

$$
\begin{aligned}
0 & =\left[\left[g_{k}(1), \ldots, g_{k}(N)\right] F_{N} \mid\left[g_{k}(1), \ldots, g_{k}(N)\right] R\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{N} \\
- \\
a_{N+1} \\
\vdots
\end{array}\right] \\
& =\left[0, \ldots, 0,1,0, \ldots, 0:\left[g_{k}(1), \ldots, g_{k}(N)\right] R\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{N} \\
- \\
a_{N+1} \\
\vdots \\
\end{array}\right]
\end{aligned}
$$

where the 1 occurs at the k th entry and we have used the fact that $G_{N} F_{N}=I_{N}$. Hence, we have

$$
\begin{equation*}
a_{k}=-\sum_{j=N+1}^{\infty} a_{j}\left(\sum_{\substack{d \mid j \\ d \leqslant N}} g_{k}(d) F_{d, j}\right) \equiv-\sum_{j=N+1}^{n} a_{j} c_{i} \tag{17}
\end{equation*}
$$

where, using (9),

$$
\begin{equation*}
c_{j} \equiv \sum_{\substack{d j j \\ d \leqslant N}} g_{k}(d) F_{d, j}=\sum_{\substack{d j j \\ d \leqslant N}} g_{k}(d) r_{d}^{j-d} . \tag{18}
\end{equation*}
$$

From (12), we see that $c_{j}=0$ if $k+j$. Thus, (17) can be written as

$$
\begin{equation*}
a_{k k}=-\sum_{l \geqslant(N+1) / k}^{\infty} c_{l k} a_{l k} . \tag{19}
\end{equation*}
$$

Now, in (18), applying (12), (11), (14), (15) and Lemma 5, we have

$$
\begin{aligned}
\left|c_{l k}\right| & =\left|\sum_{\substack{d, l k \\
d \geqslant N}} g_{k}(d) r_{d}^{l k-d}\right| \\
& =\left|\sum_{\substack{\nu, l \\
v \leqslant N / k}} g_{k}(k \nu) r_{k \nu}^{k(l-\nu)}\right| \\
& =\left|g_{k}(k) r_{k}^{(l-1) k}+\sum_{\substack{\nu \mid l \\
1<\nu \leqslant N / k}} h_{k}(\nu) \rho_{\nu}^{l-\nu}\right| \\
& \leqslant \rho^{(l-1) k}+\sum_{\substack{\nu \mid l \\
l<\nu \leqslant N / k}} \rho^{k \nu / 2} 2^{(\log \nu / \log 2)^{2}} \rho^{k(l-\nu)} \\
& =\rho^{(l-1) k} \div \sum_{\substack{\nu / l \\
1<\nu \leqslant N / k}} \rho^{k(l-\nu / 2)} 2^{(\log \nu / \log 2)^{2}} .
\end{aligned}
$$

But $\nu \mid l, v<l$ implies that $\nu \leqslant l / 2$. Hence, for $l \geqslant 2$,

$$
\left|c_{l k}\right| \leqslant \rho^{k l / 2}\left(1+\sum_{\substack{v \mid l \\ 1<\nu \leqslant N / k}} 2^{(\log v / \log 2)^{2}}\right)
$$

Therefore, for $l k \geqslant N+1$, and sufficiently large N, we have

$$
\begin{equation*}
\left|c_{l k}\right| \leqslant \rho^{l k / 2}\left(1+\frac{N}{k} 2^{(\log N)^{2}}\right)<\rho^{l k / 4} \tag{20}
\end{equation*}
$$

Now since the power series $\sum a_{k} z^{k}$ has radius of convergence $\geqslant 1$, we have

$$
\sum_{j=1}^{\infty}\left|a_{j}\right| p^{j / 4}<\infty
$$

so that combining (19) and (20) and taking $N \rightarrow \infty$, we can conclude that $a_{k}=0$. This holds for every k. That is, the given function $f \in H$, satisfying (2), is the zero function.

3. Two-Dimensional Riemann Series Representation

In this section we will prove Theorems 2,3 , and 4. Let $P_{N}(z)=$ $a_{1} z+\cdots+a_{N} z^{N}$ be a polynomial of degree N. That P_{N} satisfies (3) means that

$$
\sum_{1 \leqslant k \leqslant N / n} a_{k n} r_{n}^{(k-1) n}=\delta_{N, n}, \quad n=1,2, \ldots
$$

That is, the coefficients $a_{1} \ldots, a_{N}$ of P_{N} are uniquely determined by the nonhomogeneous system

$$
F_{N}\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right] .
$$

Hence,

$$
\left[\begin{array}{c}
a_{1} \tag{21}\\
\vdots \\
a_{N}
\end{array}\right]=G_{N}\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right] .
$$

Since $g_{N}(N)=1$, we have $a_{N}=1$. This completes the proof of Theorem 2 . From (21) we note that

$$
\begin{aligned}
a_{n}=g_{n}(N) & =0 & & \text { if } n+N \\
& =h_{n}(N / n) & & \text { if } n \mid N .
\end{aligned}
$$

Hence, we can write

$$
\begin{equation*}
P_{N}(z)=\sum_{n \mid N} h_{n}\left(\frac{N}{n}\right) z^{n}=\sum_{n \mid N} g_{n}(N) z^{n} \tag{22}
\end{equation*}
$$

For reference we list the first six polynomials:

$$
\begin{align*}
& P_{1}(z)=z \\
& P_{2}(z)=-r_{1} z+z^{2}, \\
& P_{3}(z)=-r_{1}{ }^{2} z+z^{3}, \\
& P_{4}(z)=\left(-r_{1}{ }^{3}+r_{1} r_{2}{ }^{2}\right) z-r_{2}{ }^{2} z^{2}+z^{4}, \tag{23}\\
& P_{5}(z)=-r_{1}{ }^{4} z+z^{5}, \\
& P_{6}(z)=\left(-r_{1}{ }^{5}+r_{1} r_{2}{ }^{4}+r_{1}{ }^{2} r_{3}{ }^{3}\right) z-r_{2}{ }^{4} z^{2}-r_{3}{ }^{3} z^{3}+z^{6} .
\end{align*}
$$

Suppose now $0<r_{n} \leqslant \rho<1$ for all n. From Lemma 5, we have

$$
\begin{aligned}
\left|P_{n}(z)\right| & \leqslant|z|^{n}+\sum_{\substack{k \mid n \\
k<n}}\left|g_{k}(n)\right||z|^{k} \\
& \leqslant|z|^{n}+\sum_{\substack{k \mid n \\
k<n}} \rho^{n / 2} 2^{((\log n / k) / \log 2)^{2}}|z|^{k} \\
& \leqslant|z|^{n}+\rho^{n / 2} 2^{(\log n / \log 2)^{2}}|z|^{n / 2} d(n)
\end{aligned}
$$

where, as usual, $d(n)$ denotes the number of divisors of n (cf. [10]).

Let $\rho^{1 / 2} \leqslant r<1$. Then for all z with $|z| \leqslant r$, we have

$$
\left|P_{n}(z)\right| \leqslant 2 r^{n / 2}
$$

for all large n. Hence, if $\left\{\alpha_{n}\right\}$ is any sequence satisfying (4), then

$$
\limsup _{n \rightarrow \infty}\left|\frac{\alpha_{n}}{r_{n}{ }^{n}} P_{n}(z)\right|^{1 / n} \leqslant r^{1 / 2}<1
$$

uniformly for $|z| \leqslant r$. This proves that the polynomial series (5) converges uniformly on every compact subset of U to some function $f \in H$. Write

$$
f(z)=\sum_{n=1}^{\infty} \frac{\alpha_{n}}{r_{n}{ }^{n}} P_{n}(z)
$$

Then by Theorem 2, we have

$$
\begin{aligned}
S_{N}\left(r_{N}, f\right) & =\sum_{n=1}^{\infty} \frac{\alpha_{n}}{r_{n}{ }^{n}} S_{N}\left(r_{N}, P_{n}\right) \\
& =\sum_{n=1}^{\infty} \frac{\alpha_{n}}{r_{n}{ }^{n}} r_{N} N \delta_{n, N}=\alpha_{N}
\end{aligned}
$$

$N=1,2, \ldots$. This completes the proof of Theorem 3.
We now proceed to prove Theorem 4. Let $f=\sum a_{n} z^{n} \in H$ and let $\alpha_{n}=$ $s_{n}\left(r_{n}, f\right)-f(0)$. Then

$$
\frac{\alpha_{n}}{r_{n}{ }^{n}}=a_{n}+\sum_{\nu=2}^{\infty} a_{v n} r_{n}^{(\nu-1) n}
$$

Hence,

$$
\begin{aligned}
\frac{\left|\alpha_{n}\right|}{r_{n}^{n}} & \leqslant\left|a_{n}\right|+\sum_{\nu=2}^{\infty}\left|a_{\nu n}\right| \rho^{(\nu-1) n} \\
& \leqslant\left|a_{n}\right|+\sum_{\nu=2}^{\infty}\left|a_{\nu n}\right| \tilde{\rho}^{\nu n} \\
& \leqslant\left|a_{n}\right|+\sum_{\nu=0}^{\infty}\left|a_{\nu}\right| \tilde{\rho}^{\nu}
\end{aligned}
$$

where $\tilde{\rho}=\rho^{1 / 2}<1$. The infinite series on the right converges since $f \in H$. Also, since $f \in H$, $\lim \sup \left|a_{n}\right|^{1 / n} \leqslant 1$. Hence, $\lim \sup \left|\alpha_{n}\right|^{1 / n} / r_{n} \leqslant 1$, and by Theorem 3, the polynomial series

$$
f(0)+\sum_{n=1}^{\infty} \frac{\alpha_{n}}{r_{n}^{n}} P_{n}(z)=f(0)+\sum_{n=1}^{\infty} \frac{s_{n}\left(r_{n}, f\right)-f(0)}{r_{n}{ }^{n}} P_{n}(z)
$$

converges uniformly on every compact subset of U to a function $F \in H$. Clearly, $s_{n}\left(r_{n}, F\right)=s_{n}\left(r_{n}, f\right)$, or $s_{n}\left(r_{n}, F-f\right)=0$, for $n=1,2, \ldots$. By Theorem $1, F \equiv f$. This completes the proof of Theorem 4.

4. Extensions and Counterexamples

In this section we will consider the case when the radii r_{n} are allowed to approach 1 , and we will show that in general we cannot take r_{n} to be 1 for all large n. We need a lemma first.

Lemma 6. Let $0<r_{n} \leqslant\left(\frac{1}{2}\right)^{1 / n}$ for $n=1,2, \ldots$. Then $\left|g_{1}(n)\right| \leqslant \frac{1}{2}$ for $n=2,3, \ldots$.

Proof. We know from (11) that $g_{1}(2)=-r_{1} g_{1}(1)=-r_{1}$ so that $\left|g_{1}(2)\right| \leqslant \frac{1}{2}$. We will prove the general result by induction. Again by (11) we have

$$
\begin{aligned}
\left|g_{1}(n)\right| & \leqslant \sum_{\substack{d \mid n \\
d<n}}\left|g_{1}(d)\right| r_{d}^{n-d} \leqslant \sum_{\substack{d \mid n \\
d<n}}\left|g_{1}(d)\right|\left(\frac{1}{2}\right)^{(n-d) / d} \\
& \leqslant\left(\frac{1}{2}\right)^{n-1}+\sum_{\substack{d \mid n \\
1<d<n}}\left|g_{1}(d)\right|\left(\frac{1}{2}\right)^{(n-d) / d} \\
& \leqslant\left(\frac{1}{2}\right)^{n-1}+\sum_{\substack{d \mid n \\
1<d<n}}\left(\frac{1}{2}\right)^{n / d}
\end{aligned}
$$

where the last inequality follows from the induction hypothesis. Since $n>2$, we have $(n-1) \neq n / d$ for all $d \mid n$ and $1<d<n$. Hence,

$$
\begin{aligned}
\left|g_{1}(n)\right| & \leqslant\left(\frac{1}{2}\right)^{n-1}+\sum_{\substack{d \mid n \\
1<d<n}}\left(\frac{1}{2}\right)^{n / d} \\
& <\sum_{d=2}^{\infty}\left(\frac{1}{2}\right)^{d}=\frac{1}{2}
\end{aligned}
$$

With the above lemma and the results developed in Section 2, we can now prove the following.

Proposition 1. Let $0<r_{n} \leqslant 1$ such that for all large n, say $n>n_{0}$,

$$
\begin{equation*}
r_{n} \leqslant\left(\frac{1}{2}\right)^{1 / n} . \tag{24}
\end{equation*}
$$

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ such that $\sum\left|a_{n}\right|<\infty$. Then f must be the zero function if $s_{n}\left(r_{n}, f\right)=0$ for each $n=1,2, \ldots$.

Proof. Since $\sum\left|a_{n}\right|<\infty$, we know that $f \in A$ so that $s_{n}(1, f)$ is defined. By a proof similar to that of Lemma 1, we can also conclude that $f(0)=0$. Let k be any positive integer. Fix k. Then for any arbitrarily large positive integer N, we have, from (19) in Section 2,

$$
\begin{equation*}
\left|a_{k}\right| \leqslant \sum_{l \geqslant(N+1) / k}\left|c_{l k}\right|\left|a_{l k}\right| \tag{25}
\end{equation*}
$$

where, as in Section 2,

$$
\left|c_{l k}\right|=\left|\rho_{1}^{(l-1)}+\sum_{\substack{\nu / l \\ 1<v \leqslant N / k}} h_{k}(\nu) \rho_{\nu}^{l-\nu}\right|
$$

where $h_{k}(\nu)=g_{k}(\nu k)$ and $\rho_{\nu}=r_{v k}^{k}$. Let us first assume that (24) holds for all $n=1,2, \ldots$. Then since h_{k} satisfies the same recursive scheme as g_{1} with r_{k} replaced by ρ_{k} (cf. (11) and (15)), we see from Lemma 6 that $\left|h_{k}(\nu)\right| \leqslant \frac{1}{2}$ for all ν. Hence,

$$
\begin{aligned}
\left|c_{l k}\right| & \leqslant r_{k}^{k(l-1)}+\frac{1}{2} \sum_{\nu \mid l} r_{\nu k}^{(l-\nu)_{k}} \\
& \leqslant\left(\frac{1}{2}\right)^{(l-1)}+\frac{1}{2} \sum_{\nu \mid l}\left(\frac{1}{2}\right)^{(l-\nu) / v k} \\
& <1+\frac{1}{2} \frac{1}{1-\left(\frac{1}{2}\right)^{1 / k}} \equiv C_{k}
\end{aligned}
$$

Putting this into (25), we have

$$
\left|a_{k}\right| \leqslant C_{k} \sum_{\nu=N+1}^{\infty}\left|a_{\nu}\right| \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

Hence, $a_{k}=0$ for each k or $f \equiv 0$. More generally, suppose now (24) is satisfied for $n>n_{0}$. Let

$$
F(z)=f(z)-\sum_{k=1}^{n_{0}} 2^{k} s_{k}\left(\frac{1}{2}, f\right) \tilde{P}_{k}(z)
$$

where the polynomials \tilde{P}_{k} are defined in Theorem 2 for the sequence $\frac{1}{2}, \ldots, \frac{1}{2}$ (so that $s_{k}\left(\frac{1}{2}, \tilde{P}_{j}\right)=\delta_{k, j} / 2^{j}, 1 \leqslant j, k \leqslant n_{0}$). Hence,

$$
\begin{aligned}
s_{n}\left(\frac{1}{2}, F\right) & =s_{n}\left(\frac{1}{2}, f\right)-\sum_{k=1}^{n_{0}} 2^{k} s_{k}\left(\frac{1}{2}, f\right) \delta_{n, k} / 2^{n} \\
& =s_{n}\left(\frac{1}{2}, f\right)-s_{n}\left(\frac{1}{2}, f\right)=0
\end{aligned}
$$

for $n=1, \ldots, n_{0}$. But for $n>n_{0}, s_{n}\left(r_{n}, F\right)=s_{n}\left(r_{n}, f\right)=0$. Hence, from the above conclusion with the sequence $\frac{1}{2}, \ldots, \frac{1}{2}, r_{n_{0}+1}, \ldots$ (which clearly
satisfies (24) for all n), we can conclude that $F=0$, or $f(z) \cdots a_{1} z \cdots \cdots$ $a_{n_{0}} z^{n_{n}}$, a polynomial of degree at most n_{0}. But then $0==s_{n_{g}}\left(r_{n_{a}}, f\right)=$ $a_{n_{0}} r_{n_{0}}^{n_{0}}, 0=s_{n_{0}-1}\left(r_{n_{0}-1}, f\right)=a_{n_{0}-1} r_{n_{0}-1}^{n_{0}-1}, \ldots, 0=s_{1}\left(r_{1}, f\right)=a_{1} r_{1}$. Hence, f is the zero function as asserted. This completes the proof of Proposition 1. A similar transformation can be used to derive the following from Theorem 1:

Corollary 1. Let $0<r_{n} \leqslant 1, n=1,2, \ldots$ and $\lim \sup _{n \rightarrow \infty} r_{n}<1$. Let $f \in H$ satisfy $s_{n}\left(r_{n}, f\right)=0$ for $n==1,2, \ldots$. Then f is the zero function.

Next, we have the following result concerning "two-dimensional" Riemann series expansion.

Proposition 2. Let $0<r_{n} \leqslant 1$ such that $r_{n} \leqslant\left(\frac{1}{2}\right)^{1 / n}$ for all large n. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ satisfy

$$
\begin{equation*}
a_{n}=O\left(n^{-(1+\epsilon)}\right) \quad \text { for some } \quad \epsilon>0 \tag{26}
\end{equation*}
$$

Then f can be represented by the Riemann series expansion (6) (uniformly on every compact subset of U).

Proof. Let

$$
F(z) \equiv \sum_{n=0}^{\infty} \frac{s_{n}\left(r_{n}, f\right)-f(0)}{r_{n}{ }^{n}} P_{n}(z)+f(0) \equiv \sum_{n=0}^{\infty} b_{n} z^{n}
$$

where $P_{n}(z)=\sum_{v i n} g_{v}(n) z^{\nu}$. From the estimate in Lemma 6 (where we can assume without loss of generality by the transformation used at the end of the above proof that $r_{n} \leqslant\left(\frac{1}{2}\right)^{1 / n}$ for all n), it is clear that the series converges uniformly on every compact subset of U to $F \in H$. Also, it is clear that $s_{n}\left(r_{n}, F\right)=s_{n}\left(r_{n}, f\right)$ for $n=1,2, \ldots$. In order to apply Proposition 1 to conclude that $F \equiv f$, it is sufficient to prove that $\sum\left|b_{n}\right|<\infty$. For $n \geqslant 1$, it is easy to see that

$$
\begin{aligned}
b_{n} & =\sum_{v=1}^{\infty} \frac{s_{v n}\left(r_{v n}, f\right)-f(0)}{r_{v n}^{\nu n}} g_{n}(\nu n) \\
& =\sum_{k=1}^{\infty} a_{k n} r_{n}^{(k-1) n}+\sum_{v=2}^{\infty} g_{n}(\nu n) \sum_{k=1}^{\infty} a_{k v n} r_{v n}^{(k-1) \stackrel{ }{n}} .
\end{aligned}
$$

Hence, for all large n, we have $\left|a_{j}\right| \leqslant c / j^{1+\epsilon}$ and $\left|g_{n}(j)\right| \leqslant \frac{1}{2}$ (where we again apply Lemma 6, by assuming without loss of generality that (24) holds for all n), so that

$$
\left|b_{n}\right| \leqslant \frac{c}{n^{1+\epsilon}} \sum_{k=1}^{\infty} \frac{1}{k^{1+\epsilon}} \frac{1}{2^{k-1}}+\frac{c}{2 n^{1+\epsilon}} \sum_{\nu=2}^{\infty} \frac{1}{\nu^{1+\epsilon}} \sum_{k=1}^{\infty} \frac{1}{k^{1+\epsilon}} \frac{1}{2^{k-1}}
$$

Hence, $\sum\left|b_{n}\right|<\infty$ and we have completed the proof of Proposition 2.

We will now show that one cannot expect a very general result. In a private communication [1], Ching (who unfortunately passed away in 1974 at the age of 27) has observed that the function

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n} z^{n} \tag{27}
\end{equation*}
$$

where μ is the classical number theoretic Möbius function (cf. [10]), is in A, and satisfies the condition $s_{n}(1, f)=0$ for all $n=1,2, \ldots$. It is obvious that the function f in (27) is holomorphic in U. To prove that f is continuous on \bar{U}, we can use the following estimate of Davenport [9]

$$
\begin{equation*}
\sum_{k=1}^{n} \mu(k) e^{i k \theta}=O\left(n(\log n)^{-2}\right) \tag{28}
\end{equation*}
$$

where the estimate is uniform in θ, and apply the standard technique of summation by parts to the partial sums of the series (27). To prove that $s_{n}(1, f)=0$ for all n, it is necessary and sufficient to prove that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\mu(k n)}{k}=0, \quad n=1,2, \ldots \tag{29}
\end{equation*}
$$

It is well known (cf. [12]) that (29) holds for $n=1$. For $n>1$, we have:

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{\mu(k n)}{k} & =\sum_{(k, n)=1} \frac{\mu(k n)}{k}=\mu(n) \sum_{(k, n)=1} \frac{\mu(n)}{n} \\
& =\mu(n) \prod_{p \nmid n}\left(1-\frac{1}{p}\right)=\mu(k) \sum_{n=1}^{\infty} \frac{\mu(n)}{n} / \prod_{p \mid n}\left(1-\frac{1}{p}\right) \\
& =0 .
\end{aligned}
$$

By using the transformation technique at the end of the proof of Proposition 2 and the example in (27), we can conclude the following:

Proposition 3. Let $0<r_{n} \leqslant 1$ and $r_{n}=1$ for all large n. There exists a nontrivial function $f \in A$ such that $s_{n}\left(r_{n}, f\right)=0$ for $n=1,2, \ldots$.

5. Final Remarks

In this paper, when the radii r_{n} are uniformly bounded away from 1 , the two-dimensional problem is completely solved. If the radii r_{n} are allowed to tend to 1 , both positive and negative results are obtained in Section 4.

However, it is clear that there is still a big gap between these results. The functions $g_{n}(k)$ introduced in this paper take the place of the number theoretic Möbius function $\mu(k)$ that is used in the one-dimensional problem (cf. [2,5]). To improve the positive results, one has to get better estimates on the functions $g_{n}(k)$, while to improve the negative result, even the signs of these functions have to be considered. A deeper understanding of the problem depends on a generalization of the combinatorial Möbius functions $\mu_{P \times P}$ where P is a locally finite poset. The idea is that the associated zeta function can take any complex value, not merely 0 and 1 . We will show elsewhere that Möbius inversion in this context is not appreciably more difficult then what Rota describes in [11]. In this way we hope to attack the problem of more general $w_{n}{ }^{k}$, where perhaps $w_{n}{ }^{k}$ is the k th root of an nth degree polynomial. Further studies on this project will be deferred to a later date. We note that question (a) posed in [8] has now been answered, and problems (e) and (f) posed in [8] have also been partially solved in this paper.

References

1. C. H. Ching, private communication.
2. C. H. Ching and C. K. Chui, Uniqueness theorems determined by function values at the roots of unity, J. Approximation Theory 9 (1973), 267-271.
3. C. H. Ching and C. K. Chui, Recapturing a holomorphic function on an annulus from its mean boundary values, Proc. Amer. Math. Soc. 39 (1973), 120-126.
4. C. H. Ching and C. K. Chui, Asymptotic similarities of Fourier and Riemann coefficients, J. Approximation Theory 10 (1974), 295-300.
5. C. H. Ching and C. K. Chui, Mean boundary value problems and Riemann series, J. Approximation Theory 10 (1974), 423- 336.
6. C. H. Ching and C. K. Chur, Analytic functions characterized by their means on an arc, Trans. Amer. Math. Soc. 184 (1973), 175-183.
7. C. K. ChuI, Concerning rates of convergence of Riemann sums, J. Approximation Theory 4 (1971), 279-287.
8. C. K. Chul and C. H. Ching, Approximation of functions from their means, in "Symposium on Approximation Theory" (G. G. Lorentz, Ed.), pp. 307-312, Academic Press, New York, 1973.
9. H. Davenport, On some infinite series involving arithmetical functions II, Quart. J. Math. 8 (1937), 313-320.
10. G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," 3rd ed., Clarendon, Oxford, 1954.
11. G.-C. Rota, On the fundations of combinatorial theory, I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340-368.
12. E. C. Titchmarch, "The Theory of the Riemann Zeta-Function," Oxford Univ. Press, London, 1951.
