
JOURNAL OF APPROXIMATION THEORY 22, 11-26 (1978)

A Two-Dimensional Mean Problem

G. R. BLAKLEY, I. BOROSH, AND C. K. CHUI

Department of Mathematics, Texas A & M University, College Station, Texas 77843

Communicated by G. G. Lorentz

Received March 25, 1976

Let 0 < rn < 1 and Wn = ei21fln, n = 1,2,.... For a functionfholomorphic in
the open unit disc U, we consider the linear functionals Sn defined by the means
sn(r",j) = (I/n) L:~~lf(r"w"k). If 0 < r" ,;;;; p < 1, we prove that f is uniquely
determined by sn(r" ,n, n = 1, 2,..., and in fact, f can be represented by a poly­
nomial series whose coefficients involve sn(r" ,j). The case 0 < r" ,;;;; 1 is also
considered. In particular, if r" = 1 for all large n, there exist nontrivial functions
f, holomorphic in U and continuous on the closure of U, such that s"(r,, ,f) = 0
for n = 1,2,....

1. INTRODUCTION AND MAIN RESULTS

Let U denote the open unit disc in the complex plane with closure V and
boundary T. Let H = H(U) denote the space of functions holomorphic in U;
and as usual, let HP be the Hardy spaces and A the space of functions in H
which are continuous on V. For each positive integer n, let wn

k = exp(i27Tkln),
k = I,... , n, be the nth roots of unity. For a continuous function / on T,
we consider its arithmetic means

These are Riemann sums and hence converge to the Riemann integral

of/ as n ---+ DC. The sequence rn(f) = sn(f) - soo(f), called the sequence of
Riemann coefficients of / in [4], has similar asymptotic behavior to the
sequence of Fourier coefficients of/for certain classes offunctions/(cf. [4,7]).
Since the Fourier coefficients of/uniquely determine/, it is natural to ask if

11
0021-9045/78/0221-0011$02.00/0

Copyright © 1978 by Academic Press. Inc.
All rights of reproduction in any form reserved.



12 BLAKLEY, BOROSH, Al\D C!lli

the Riemann coetllcients of f \\ auld also uniquely determine f Ilowcvu.
it is clear that any "odd" function

j(:.) C~ I ak(:.I. - :.-1,),
I,~I

where L: i ak I < if,; say, satisfies

sif) = 0, II = ],2,.... ( I )

Hence, we only consider functions holomorphic in U. This problem was
studied in [2], [6], and [8]. We collect some of the known results in the
following

THEOREM A. Let l(z) = L:=o akzk be in A such that (1) is satisfied.
Then f is the zero function, if one of the following conditions is satisfied:

(a) l' E HI;

(b) an ~~ O(llnl ; <)for some E > 0;

(c) L:~N I ak ! == O(I/N); or

(d) .f(z) = L;~o bnza" with L:! bn I < 00 where q is some positire
integer.

Of course each of the above sufficient conditions is a technical one. How-
ever, it will be shown in Section 4 that there exists a nontrivial l(z) Lan:'''
in A with I an I ~ lin for all n such that (I) is satisfied.

We remark that the problem considered above is a "one-dimensional"
one. In [8], a "two-dimensional" problem was posed, and it is the intention
of this paper to study it. Let °< r n < 1, n == J, 2, .... For each f E H,
consider the "two-dimensional" means

s (r f) == ! I f(r w k)
n n'. /1 k=l'· n n

off, that is, the means taken on the concentric circles I z I - r" , II

We will establish the following.
1,2,....

THEOREM 1. Let °< rn ~ p < 1, n = 1,2,... , and letfE H satisfy

sn(rn,f) = 0, n = 1,2,.... (2)

Then f is the zero function.

It will be clear (from the following Theorem 2) that none of the rn's in
Theorem 1 can be replaced by 0. The condition that the rn's are uniformly
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bounded away from I is a technical one. We will give a proposition in
Section 4 where the rn's are allowed to tend to 1. If some rn's would be I,
then to define the means sirn , f), we would have to assume that f is a
function in A. However, we will show that there is a nontrivial function f
in A with sn(rn , f) = 0 for all n = I, 2, ... , where all, with the exception of
a finite number of the rn's, are equal to I. The next results show that if any
of the conditions in (2) is omitted, then Theorem I no longer holds.

THEOREM 2. Let 0 < rn ~. I, n = I, 2,.... For each positive integer N,
there is a unique polynomial P N of degree N, leading coefficient equal to I,
and P N(O) = 0, such that

(3)n = 1,2'00'sn(r.. , PN) = rnnOn.N,

where, as usual, On.N is the Kronecker delta.

The polynomials P N can be found explicitly and will be studied in Section 3.
When 0 < rn ~ p < I, Theorem I tells us that each functionfholomorphic
in U is uniquely determined by its means sn(rn , f). This leads to the following
interesting, and perhaps important, question: How do we reconstruct a
functionfE H from its means sirn ,f)? From Theorem 4 below, we will see
that f can be reconstructed from a polynomial series whose coefficients are
the means sn(rn , f). The "one-dimensional" problem has been studied in [5],
and the representation polynomial series there is called a "Riemann series."
In Section 3, we will prove the following results.

THEOREM 3. Let 0 < rn ~ p < I, n = 1,2'00' and {tXn} be a sequence of
complex numbers which satisfies the condition

lim sup I tXn 1
1 /n/rn ~ 1. (4)

Then the polynomial series

(5)

where the polynomials Pn are defined in Theorem 2, converges uniformly on
every compact subset of U to a function f E H, such that sirn ,f) = tx.. for
each n = 1,2,....

THEOREM 4. Let 0 < rn ~; P < I and Pn be the polynomials defined in
Theorem 2. Then every function f holomorphic in U can be represented by a
polynomial series:

(6)

where the series converges uniformly on every compact subset of U to f
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We call (5) a "two-dimensional" Riemann series, and (6) a "two­
dimensional" Riemann series expansion off

In Section 4, we will study the case when the radii rn are allowed to
approach 1.

2. PROOF OF THEOREM

We will first prove j(O) == O.

LEMMA 1. Let 0 < rn ~ p < 1, n = 1, 2, ... ,fE H, and sn(rn ,f) = O/or
infinitely many n. Then j(O) == O.

Proof By choosing a subsequence, if necessary, we may assume that
sn(rn ,f) = 0 for n = nj, j = 1,2,... , and rn. --+ ro ~ p < 1. Then for
n = nj , we have '

If(O)! = 1/(0) - s,,(rn ,/)1

= 1f/(roei21Tt) dt - sn(rn , f)1

~ I (f(roei21Tt) df - ~ ht/(roei21Tk/n)I

-+- !1 ±If(rnei21Tk/n) - f(roei21Tk/n)!.
k~l

The first term on the right tends to zero because Riemann sums converge
to the Riemann integral and the second term is arbitrarily small for large
n = nj because f is uniformly continuous on I z I ~ (l + r o)/2. Hence,
j(O) = O.

In virtue of Lemma 1, we may now write

00

fez) = L akzk,
k~l

so that

From hypothesis (2), it is necessary and sufficient to prove that the infinite
homogeneous system

00

L r~k~l)nakn = 0,
k~l

n = 1,2,... (7)
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has only the trivial solution. Let F = (Fi) be the (infinite) coefficient
matrix:

[~
r1 r1

2 r1
3 r1

4 r1
5 r1

6

]1 0 r2
2 0 r 4 0 ...

2

F = (Fi.i) = 0 I 0 0 r 3 0 (8)3

0 0 I 0 0 0

where
Fu = 0 if Hj

(9)
j-i if i Ij,= ri

and let FN = (Fi,i)l<.U<.N, N = 1,2,... , be the truncated N X N matrices.
For each N, we are interested to find the inverse GN of FN • From the
properties of F, it is easy to show that the matrices GN = (giU))l<'i,i<.N,
N = 1,2,... , are truncations of an infinite matrix

Indeed, GNFN = IN means L~lgk(I)FI,n = Dk,n, I ~ k, n ~ N, and by
using (9), we have

I gk(l) rn- I = Dk,n '
lin

In particular, the gk(l)'s have the following properties:

(10)

gl(n) = - I gl(d) r~-d,
din
d<n

(11)

and
if kt n. (12)

Here, (11) follows trivially from (10), and (12) can be obtained by an
induction proof as follows. Indeed, if k t n, then from (10) it follows that

gin) + I gk(d) r;-d = Dk n = O.
din
d<n

If din and d < n then k t d (for otherwise kin) so that gk(d) = 0 by the
induction hypothesis. Hence, (12) is obtained. From (10) and (12), we also
have

and (13)
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Next, for a fixed integer k, k ~ I, we define

and k
PI = rkl· (14)

Then from (12) and (13), it is clear that hk(n) satisfies

and
hk(I) = 1

hk(n) = - L hk(l) pf-l
ljn
l<n

if n > 1.
(15)

We remark that the hk's satisfy the same recursive scheme as gl with rn

replaced by Pn . To estimate gl and hk , we need the following combinatorial
lemma.

LEMMA 2. Let H be a function defined on the set ofpositive integers by

and
H(I) = 1

H(n) = L H(l)
l jt~

l<n

if n>1.

Then H(n) ~ 2ilogn/log2)2 for all n.

Proof As usual, let Q(n) denote the number of prime factors of n,
counted with their multiplicities (cf. [10]). We will call Q(n) the length of n.
Now, if P is a prime number, then by definition H(p) = H(1) = 1,
H(p2) = H(p) + H(1) = 2,... , H(pi) = H(pH) + ... + H(I) = 2H , ....

Hence, in general, if PI' •.. , Pt are primes and (Xl' ••• ' (Xt are positive integers,
then H(p~l ... p~t) does not depend on PI ,... , Pt but only depends on
(Xl' ••• ' (Xt • Also for each positive integer k, there are only a finite number of
ways to choose positive integers (Xl' ..• ' (Xt such that (Xl + ... + (Xt = k.
We can therefore define

Sk = max{H(n): Q(n) = k}.

(Here, we note that if n = P~l ... p~t, then Q(n) = (Xl + ... + (Xt = k.) It is
clear that Sl ~ 8 2 ~ .••• Let us write n = Pl··· Ph: where some of the
primes p/s may be equal, so that Q(n) = k. The number of factors of n
with length k - 1 is at most k = (~), the number of factors of n with length
k - 2 is at most (~),.... Hence, we have

Sk ~ (~) 8 k - l + (;) 8 k _ 2 + ... + (~) So

<; Sk-l [(~) + ... + (~)] ~ 2k8 k _ l ,
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and therefore,

Thus, if n is any positive integer, with length Q(n) = k say, then

But n = PI ... Pk ~ 2k = 2mn ). This completes the proof of the lemma.

LEMMA 3. Let 0 < rn ~ 1. Thenfor each n, Igl(n)! ~ H(n).

17

Proof We have gl(l) = H(I) = 1. Hence, from (II) and by using the
induction hypothesis, we have

i gl(n) I ~ L [gl(d)1 r;-d ~ L H(d) = H(n)
din d:n
d<n d<n

for n > 1.
If the rn's are uniformly bounded above by p ~ 1, then we have the

following upper bound for gl(n).

LEMMA 4. Let 0 < rn ~ P ~ 1. Then for all n = 2,3,... ,

Proof We have, from (11) and by using Lemma 3, for n > 1,

gl(n)[ ~ L I gl(d)! r,7-d ~ I H(d) pn-d.
din (( n
d<n d</1

Since d < nand din imply d ~ nf2, we have n - d ~ nf2, so that
pn-d ,( pn j 2. By Lemma 2, we then obtain

i g](n) ",: pn j 2 I H(d) = pn j 2H(n) ~ pn j 2 2(lognj!og2)2.

din
<1<'n

By using the above argument and (15), we also have

LEMMA 5. Let 0 < rn ~ p ,,:;; 1 and k be any positive integer. Then

11>1. (\ 6)
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We are now ready to complete the proof of Theorem 1. Let 0 < rn ,s;
p < I, and let k be any positive integer. From (7) and (8), we have

i at
F~ I R

I

I
- - -1- --

I
I

o : s
1

1

and hence,

= [0, ... ,0, 1,0,...,0 ! [gk(l), ... , gk(N)] R]

where the 1 occurs at the kth entry and we have used the fact that GNFN = IN'

Hence, we have

where, using (9),

Ci ~ L gk(d) Fd.i = L gk(d) rft-d.
dlj dlj
d~N d~N

From (12), we see that Cj = 0 if k l' j. Thus, (17) can be written as

00

ak = - L ClIca!k •
!;;><N+1)/lc

(18)

(19)
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Now, in (18), applying (12), (II), (14), (15) and Lemma 5, we have

I elk I = I L gk(d) r~k-d I
djlk
d;;:N

I " (k) k(l-v) I= 1... gk V r kv
..,il

v~N/k

L hk(v) p~-v I
vll

l<v<,N/k

:( pll-llk + L pkv/22(lOgv/log2)'pkll-vl

= pll-l)k --;- L pk(l-v/2) 2(lOgv/log2)'.

vii
l<v<,N/k

But v II, v < I implies that v :( 1/2. Hence, for I ;)0 2,

19

I elk [ :( pkl/2 (1 + L
viI

l<v<,N /k

2 (logv /IOg2)').

Therefore, for Ik ;)0 N + 1, and sufficiently large N, we have

(20)

Now since the power series L akzk has radius of convergence ;)01, we have

co

L I aj I pj/4 < 00,
j~l

so that combining (19) and (20) and taking N ---->- 00, we can conclude that
Ok = O. This holds for every k. That is, the given function! E H, satisfying (2),
is the zero function.

3. Two-DIMENSIONAL RIEMANN SERIES REPRESENTATION

In this section we will prove Theorems 2, 3, and 4. Let PN(z) =
a1z + ... + aNzN be a polynomial of degree N. That P N satisfies (3) means
that

" a r(k-l)n = (}LJ kn n N,n,
1<,k<,N/n

n = 1,2,....
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That is, the coefficients a1 , ... , aN of P y are uniquely determined by the
nonhomogeneous system

Hence,

(21 )

Since gN(N) = ], we have aN = I. This completes the proof of Theorem 2.
From (21) we note that

an = gn(N) = 0

= hn(Nln)

Hence, we can write

if n 1 N

if n I N.

PN(z) = L hn (~-) zn = L gn(N) z".
"IN n nlN

For reference we list the first six polynomials:

P1(z) = z,

Plz) = -r1z + Z2,

PaCZ) = -r1
2Z + Z3,

Piz) = (-rI
3 + r 1r 2

2) Z - r 2
2Z2 + Z4,

PS(Z) = -r1
4Z + Z5,

P 6(Z) = (-rI
S + r 1r 2

4 + r 1
2r 3

3) Z - r 2
4Z2 - r 3

3Z3 + Z6.

Suppose now 0 < rn ~ P < 1 for all n. From Lemma 5, we have

I Pn(Z)I ~ I Z In + L I gk(n) I I z Ik

kin
k<"

~ I z In + L p"/2 2((10gn 1k1 /log2)'1 Z Ik

kin
k<"

~ I z In + pn /2 2<logn/lOg2l' I Z Inl2 den),

where, as usual, den) denotes the number of divisors of n (cf. [10)).

(22)

(23)
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Let pl/2 ~ r < 1. Then for all z with Iz I ~ r, we have

I Pn(z)I ~ 2rn/2

for all large n. Hence, if {an} is any sequence satisfying (4), then

I
a Il /

n

lim sup -'; Pn(z) ~ rl / 2 < 1
fl.-HI:> rn

21

uniformly for [ z I ~ r. This proves that the polynomial series (5) converges
uniformly on every compact subset of U to some function IE H. Write

00

fez) = I a: PnCz).
n~l r n

Then by Theorem 2, we have

N = 1,2,.... This completes the proof of Theorem 3.
We now proceed to prove Theorem 4. Let 1= L anzn E H and let an =

sn(rn , f) - f(O). Then
00

~ = a + I a r(v-l)n
r nn n v=2 vn n .

Hence,

Ira: I ~ I an I + I I avn I plv-l)n
n v=2

00

~ I an I + L I avn I pn
v=2

00

~ I an I + I I av I P,
v=o

where j5 = pl/2 < 1. The infinite series on the right converges since IE H.
Also, since IE H, lim sup I an Il/n ~ 1. Hence, lim sup I an Il/n/rn ~ 1, and
by Theorem 3, the polynomial series
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converges uniformly on every compact subset of U to a function FE H.
Clearly, sn(rn , F) = sn(rn ,1), or sn(rn , F - 1) =, 0, for n = I, 2,.... By
Theorem 1, F = f This completes the proof of Theorem 4.

4. EXTENSIONS AND COUNTEREXAMPLES

In this section we will consider the case when the radii rn are allowed to
approach 1, and we will show that in general we cannot take rn to be 1
for all large n. We need a lemma first.

LEMMA 6. Let 0 < rn :s;; (W/n for n = 1,2,.... Then [gl(n)1 :s;; t for
n = 2,3,....

Proof We know from (11) that gl(2) = -r1 gl(l) = -r1 so that
Igl(2) [ :s;; t· We will prove the general result by induction. Again by (11)
we have

Igl(n)I :s;; I Igl(d)I r;-el :s;; I Igl(d)I m(n-el)/el
din din
el<n el<n

:s;; m n- 1 + I Igl(d)I m<n-dl/d
din

l<el<n

:s;; mn
-

1 + I mn /
el ,

din
l<d<n

where the last inequality follows from the induction hypothesis. Since n > 2,
we have (n - 1) #- njd for all din and I < d < n. Hence,

Igl(n)I :s;; mn - 1 + I mn / el
din

l<el<n
00

< I (t)el = t.
d~2

With the above lemma and the results developed in Section 2, we can now
prove the following.

PROPOSITION 1. Let 0 < rn :s;; I such that for all large n, say n > no ,

(24)

Let fez) = "L.:=o anzn such that"L. I an I < 00. Thenfmust be the zero function
if sn(rn,f) = Ofor each n = 1,2.....
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Proof Since 1: Ian I < 00, we know thatfE A so that sn(1,f) is defined.
By a proof similar to that of Lemma 1, we can also conclude thatf(O) = O.
Let k be any positive integer. Fix k. Then for any arbitrarily large positive
integer N, we have, from (19) in Section 2,

I ak I~; L I elk I I alk I,
1?o(N+l)lk

(25)

where, as in Section 2,

I I I (1-1) +
elk = PI L hiv) P~-v I

vii
1<v<,Nlk

where hk(v) = gk(vk) and Pv = r~k . Let us first assume that (24) holds for
all n = 1,2,.... Then since hk satisfies the same recursive scheme as gl with
rk replaced by Pk (cf. (11) and (15», we see from Lemma 6 that Ihk(v)I ~ t
for all v. Hence,

I elk I ~ r:(I-l) + t L r;tV)k
viZ

~ (t)(l-IJ + t L (tYI-v)/vk
vii

1 1
< 1 + 2" 1 _ (Wlk :cc= Ck ·

Putting this into (25), we have

'"I ak I ~ Ck L I av I -+ 0
v~N+l

as N -+ 00.

Hence, ak = 0 for each k or f =O. More generally, suppose now (24) is
satisfied for n > no . Let

no

F(z) = f(z) - L 2ksk(t, 1) i\(z)
k~1

where the polynomials Pk are defined in Theorem 2 for the sequence t,oo., t
(so that sit, Pj) = ok.iI2i, 1 ~; j, k ~ no). Hence,

"0
sn(t , F) = sit, 1) - L 2ksk(t , f) on,kl2n

k=1

for n = 1'00" no. But for n > no, sn(rn , F) = sn(rn ,f) = O. Hence, from
the above conclusion with the sequence i,oo., i, rno+1 '00' (which clearly
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satisfies (24) for all n), we can conclude that F 0, or f(z) a1z -
an zno, a polynomial of degree at most no. But then 0 occ Sn (t n , f) -o 0 '(I

an/~~ , 0 == sn,,_l(r "0 1 ,f) == an,,-lr~~:::~ ,... , 0 = Sl(tl ,f) == alrl . Hence, f is
the zero function as asserted. This completes the proof of Proposition 1.
A similar transformation can be used to derive the following from Theorem I:

COROLLARY I. Let 0 < t n I, n = 1,2'00' and lim sUPn-.ao r71 < I. Let
f E H satisfy sn(r71 ,f) = 0 for n == 1, 2'00' . Then f is the zero function.

Next, we have the following result concerning "two-dimensional" Riemann
series expansion.

PROPOSITION 2. Let 0 < t n ~ 1 such that rn ~ (t)lln for all large n.
Let f(z) == L:~o anzn satisjl)

an = O(W(l+<) for some E > O. (26)

Then f can be represented by the Riemann series expansion (6) (uniformly on
every compact subset of U).

Proof Let

F(z) :o:::c f sn(rn '~)n- j(0) Pn(z) +- f(O)
11=0 n 11=0

where Pn(z) =~ Lvln gin) zV. From the estimate in Lemma 6 (where we can
assume without loss of generality by the transformation used at the end of the
above proof that r n ~ (t)l/n for all n), it is clear that the series converges
uniformly on every compact subset of U to FE H. Also, it is clear that
sn(rn , F) = sn(rn , f) for n = 1, 2,.... In order to apply Proposition I to
conclude that F ==- f, it is sufficient to prove that L I bn I < 00. For n ;:;: ],
it is easy to see that

bn =, i Svn(rvn,!v~ - f(O) gn(vn)
v=l vn

Hence, for all large n, we have I aj I ~ clJl+E and IgnU)1 ~ t (where we
again apply Lemma 6, by assuming without loss of generality that (24) holds
for all n), so that

ca>l 1 cOOl 00 1 1
I bn I ~ n1+E L kl+< 2k-1 +- 2nl+< L vl+E L kl+E 2k-1 .

k=l v=2 k=l

Hence, L I bn I < 00 and we have completed the proof of Proposition 2.
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We will now show that one cannot expect a very general result. In a private
communication [1], Ching (who unfortunately passed away in 1974 at the age
of 27) has observed that the function

fez) = f p.(n) zn
n~l n '

(27)

where p. is the classical number theoretic Mobius function (cf. [10]), is in A,
and satisfies the condition sn(l,j) = 0 for all n = 1,2,.... It is obvious that
the functionfin (27) is holomorphic in U. To prove thatfis continuous on a,
we can use the following estimate of Davenport [9]

n

L: p.(k) eik8 = O(n(log n)-2),
k~l

(28)

where the estimate is uniform in e, and apply the standard technique of
summation by parts to the partial sums of the series (27). To prove that
sn(l,j) = 0 for all n, it is necessary and sufficient to prove that

~ p.(kn) = 0
L. k '
k=l

n = 1,2,.... (29)

It is well known (cf. [12]) that (29) holds for n = 1. For n > 1, we have:

f p..(kn) = L: p..(kn) = p,(n) L: p,(n)
k-l k (k.n)~l k (k,n)=l n

= p,(I1) II (I - !) = p.(k) f p..~n) III (1 - !)
pfn p n~l pin P

= O.

By using the transformation technique at the end of the proof of
Proposition 2 and the example in (27), we can conclude the following:

PROPOSITION 3. Let 0 < rn ::;:; 1 and rn = 1 for all large n. There exists a
nontrivialfunctionfE A such that sn(rn ,j) = Ofor n = 1,2,....

5. FINAL REMARKS

In this paper, when the radii rn are uniformly bounded away from 1, the
two-dimensional problem is completely solved. If the radii r n are allowed to
tend to 1, both positive and negative results are obtained in Section 4.
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However, it is clear that there is still a big gap between these results. The
functions gn(k) introduced in this paper take the place of the number
theoretic Mobius function fL(k) that is used in the one-dimensional problem
(cf. [2, 5]). To improve the positive results, one has to get better estimates
on the functions g,,(k), while to improve the negative result, even the signs
of these functions have to be considered. A deeper understanding of the
problem depends on a generalization of the combinatorial Mobius functions
fLpxp where P is a locally finite poset. The idea is that the associated zeta
function can take any complex value, not merely 0 and I. We will show
elsewhere that Mobius inversion in this context is not appreciably more
difficult then what Rota describes in [I I]. In this way we hope to attack
the problem of more general wn

k , where perhaps wn
k is the kth root of an

nth degree polynomial. Further studies on this project will be deferred to a
later date, We note that question (a) posed in [8] has now been answered,
and problems (e) and (f) posed in [8] have also been partially solved in this
paper.
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